The Food and Agriculture Organization of the United Nations estimated in 2018 that 34.2 percent of the world’s fish stocks were overfished, a worrying trend that has significant impacts on ocean environments and the fishing industries that utilize them.

Satellite technology has increased the capacities of researchers and scientists to collect data about marine animals while tracking the movements of commercial fishing vessels, two crucial drivers in the effort to maintain a healthy ocean ecosystem.

Virginia Tech collaborated with Stanford University and Global Fishing Watch to host “Fish and Ships,” an online workshop connecting researchers from around the world to discuss ways in which the merging of these two data sets might answer critical questions about human impacts on ocean biodiversity and sustainability. Participants brainstormed research approaches on overlapping species habitat maps with the data for national fishing fleet positions and discussed how emerging technologies can better model ocean dynamics.

“We’re in a new age in fisheries management,” said Assistant Professor Francesco Ferretti, of Virginia Tech’s College of Natural Resources and Environment, who coordinated the workshop. “Just a few years ago we had to rely mostly on what the fishers were telling us. Now we have a huge amount of data from satellites that track marine fishing vessels. From that data we can use models to track, predict, and characterize fishing operations around the world.”

Much of the fishing vessel data discussed was provided by Global Fishing Watch, which used the automatic identification system to track the movements of approximately 70,000 industrial fishing vessels from 2012 to 2016, resulting in the first “footprint map” of fishing fleet movement around the world. This map provides a crucial perspective on both the reach of commercial fishing and what drivers are potentially influencing the industry.

At the same time that fishing vessels are “pinging” data about where they are fishing, electronic tags on broad-ranging fish, such as tuna, swordfish, and sharks, are giving scientists new information about the movements of marine animals across the world’s oceans.

“We’re starting to do overlaps of these two data sets to see how much they cross paths,” explained Ferretti, a faculty member in the Department of Fish and Wildlife Conservation. “One goal is to develop a landscape of interactions so we can understand the ways that fishing impacts fish populations. From that information, we can go further, perhaps developing guidelines to help manage the fishing industry and provide data that will improve its efficiency while allowing ocean marine animal populations a chance to recover.”

Ferretti notes that workshop participants particularly enjoyed the opportunity to work collaboratively: “This first workshop has been a great success. We created a consortium of more than 70 scientists from academic institutions, national and international management bodies, and nongovernment organizations, all willing to play ball in making the ocean a more transparent place to use resources and benefit from its services.”

The July workshop served as the kickoff meeting; Virginia Tech is planning to host a second workshop to address the inventorying and integration of large data sets and ongoing analyses.

“We are currently taking steps to invite all these scientists to Virginia Tech,” Ferretti said. “While COVID will likely impact our plans, we are considering numerous hosting options, from our Innovation Campus in Washington, D.C., to our marine facilities on the Chesapeake Bay, to our beautiful campus in Blacksburg. The goal will be a full immersion into the technical aspects of the projects brainstormed during the kickoff meeting.”

Ferretti noted that Virginia Tech has a role to play in protecting and preserving our oceans and hopes that the Fish and Ships venture will prove to be a flagship project towards that effort. The Department of Fish and Wildlife Conservation is currently bolstering its research and educational opportunities in marine fisheries, ecology, and conservation.

“We are a technical university, and right now the ocean requires technical solutions,” said Ferretti, who is affiliated with the Center for Coastal Studies and the Global Change Center, both of which are housed in Virginia Tech’s Fralin Life Sciences Institute. “There is a great deal of marine technology being developed to understand our oceans better, and Virginia Tech can play a big role in that domain.”

Written by David Fleming

Share this story